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Estimating the background bias

The background bias is estimated from a sample of 10000, 100 and 10 innovations
(observation minus background) at each grid point. In practice, these sample sizes are
unrealistically large. The choice of 10000 is to allow for the performance of the schemes
to be compared when the sampling error is negligible. The sample size of 100 and 10 may
potentially be obtained from a time-series of observations, with the assumption that the
background bias is sufficiently constant over the sample.

To demonstrate the effect of parameterising the bias, estimates of the bias for each grid
box are compared to estimating the bias as a constant over 10 grid boxes (reducing the
number of parameters from 60 to 6 and increasing the sample size for each bin 10 times).
Reducing the number of bins gives a discontinuous estimate of the bias so we also
compare to a smoothed version of 6 bins (see fig. 2).

Results
Background bias known perfectly but observation bias is uncorrected

Figure 3 shows the analysis bias as a function of variable for the tenth assimilation cycle
when different biases in the observations are present but the background bias is known
perfectly when applying BC and CI. We can conclude:

• If no observation is present then BC method gives an unbiased analysis

• If an observation is biased then the impact on the analysis depends on the mean
innovation. Overall the CI method is most sensitive to the observation biases but
does not always result in the largest analysis bias..

Introduction Fundamental to the theory of data assimilation (DA) is
that the data are an unbiased estimate of the true state. Often this
assumption is far from valid and, without bias correction, the resulting
analysis will be biased. Two methods to account for biases in the background
that do not require a change to the DA algorithm, are compared: explicit bias
correction (BC) and covariance inflation (CI). Both methods rely on an
estimate of the background bias. Given the difficulties in estimating the
background bias, the robustness of the two methods in producing an
unbiased analysis is studied within an idealised linear system

Accounting for background biases
The background biases, , may be caused by systematic errors in the numerical model
propagating the analysis from the previous assimilation cycle to become the background
at the current assimilation cycle, , as well as biases in the previous analysis, ,
propagated by the model, :

When the biases are known there are two general approaches that could be taken to
reducing the bias in the analysis, which both avoid changing the DA algorithm:

• Explicit bias correction (BC) removes the bias from the background before
assimilation without attempting to correct the source of the bias.

• Covariance inflation (CI) increases the weight given to the (presumably) unbiased
observations to give the analysis with the smallest root-mean square error [1].

If the biases are known exactly then BC is the most optimal approach to providing an
analysis that is unbiased. However, in practice, accurate estimates of the background bias
are limited to where high-quality, unbiased observations are available. In order to reduce
sampling error, assumptions about ergodicity and homogeneity need to be imposed,
which limit the amount of detail that can be provided about how the bias varies in space
and time.

Numerical experiments
Idealised model

To illustrate the ability of the BC and CI methods to give an unbiased analysis we set up an
idealised linear system in which, without any methods to control the bias, the
background error covariance and background bias remain constant as the assimilation
system is cycled, i.e. (1).

In these experiments the specified form of and are illustrated in figure 1. Direct
observations of each model variable are assimilated with error variance of 5. The linear
model and model bias that this implies in order to satisfy (1) are also plotted in figure 1.

Accounting for background bias when the bias is not known perfectly

Figure 4 shows the analysis bias as a function of variable for the tenth assimilation cycle
when the observations are unbiased but different approximations to the background
are used when applying BC and CI. We can conclude:

• CI is seen to be much more robust to errors in the bias estimate than the BC method,
both in terms of sample noise and structural errors in the bias estimate.

• The effect of the noisy estimate of the background bias in the BC method is magnified as
the system is cycled. Smoothing the bias estimate is therefore essential for the BC
method.

References [1] Dee and Da Silva. QJRMS, 1998. [2] Bonavita and Laloyaux, JAMES, 2020.

Summary

Two methods are used to correct background bias: covariance inflation (CI) and
explicit bias correction (BC). CI is found to be more robust in dealing with
uncertainty in the background bias by allowing observations to correct for
background bias while increasing the analysis uncertainty. However, altering the
covariance structure is crucial for the success of this method so it cannot be
approximated by variance inflation alone. The CI method is also more sensitive to
biased observations.
Another method to correct background/model bias is Weak constraint 4DVar
(WC4DVar). WC4DVar acknowledges the uncertainty in the bias estimate but is
difficult to implement due to the requirement for a specific DA algorithm and will
still be sensitive to assumptions about the structure of the bias [2].
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Figure 1 Experiment setup. Left: given B-matrix and Middle: resulting linear model. 
Right: given background bias (blue) and resulting model bias when; observations are 
unbiased (orange), one instrument measuring variable 15 has a bias of -1 (dashed 
green), one instrument measuring variable 30 has a bias of -1 (dashed red), and one 
instrument measuring variable 30 has a bias of 1 (dashed purple).

Figure 3: Background bias perfectly known: Analysis bias as a function of variable for the 
tenth assimilation cycle for when the background bias is unaccounted for (black), and 
accounted for using BC (blue) and CI (red). Panels give results for different observation 
biases.

Figure 2: Sample approximations to the true initial background bias (black line) for sample 
sizes of 10000 (left), 100 (middle) and 10 (right).

Figure 4: Background bias estimated from sample of innovations cf. fig 2: Analysis bias as a 
function of variable for the tenth assimilation cycle for when the background bias is 
unaccounted for (black), and accounted for using BC (blue) and CI (red). Panels give 
results for different sample sizes when estimating the background bias.
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